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Abstract

Resumo

Objective: To develop a deep learning system to classify non-small cell lung cancer (NSCLC) by histologic subtype—adenocarcinoma 
or squamous cell carcinoma (SCC)—from computed tomography (CT) images in which the tumor regions were segmented, compar-
ing our results with those of similar studies conducted in other countries and evaluating the accuracy of automated classification by 
using data from the Instituto Nacional de Câncer, Brazil.
Materials and Methods: To develop the classification system, we employed a 2D U-Net neural network for semantic segmentation, 
with data augmentation and preprocessing steps. It was pretrained on 28,506 CT images from The Cancer Image Archive, a pri-
vate database, and validated on 2,015 of those images. To develop the classification algorithm, we used a VGG16-based network, 
modified for better performance, with 3,080 images of adenocarcinoma and SCC from the Instituto Nacional de Câncer database.
Results: The algorithm achieved an accuracy of 84.5% for detecting adenocarcinoma and 89.6% for detecting SCC, with sensitivities 
of 91.7% and 90.4%, respectively, which are considered satisfactory when compared with the values obtained in similar studies.
Conclusion: The system developed appears to provide accurate automated detection, as well as tumor segmentation and classifica-
tion of NSCLC subtypes of a local population using deep learning networks trained using public image data sets. This method could 
assist oncological radiologists by improving the efficiency of preliminary diagnoses
Keywords: Carcinoma, non-small-cell lung; Image processing, computer-assisted/methods; Segmentation; Semantics; Carcinoma/
classification; Deep learning.

Objetivo: Desenvolver um sistema baseado em técnicas de aprendizado profundo para classificação dos principais subtipos histo-
lógicos de câncer de pulmão não pequenas células (CPNPC) – adenocarcinoma e carcinoma de células escamosas (CCE) – usando 
imagens tomográficas. O sistema desenvolvido segmenta o tumor nas imagens, classificando as lesões em adenocarcinoma e CCE. 
Comparamos os resultados com estudos similares e avaliamos a precisão na classificação automática dos subtipos de CPNPC 
utilizando imagens fornecidas pelo Instituto Nacional de Câncer.
Materiais e Métodos: A rede usada para segmentação semântica foi baseada na arquitetura 2D U-Net com etapa de pré-proces-
samento utilizando técnicas de aumento de dados. Esta rede foi pré-treinada com 28.506 imagens e validada com 2.015 imagens 
usando base de dados de um repositório público de informações de imagens conhecido internacionalmente como The Cancer Image 
Archive. Para classificação foi utilizada rede baseada na arquitetura VGG16, modificada para melhorar o desempenho, usando 
3.080 imagens de adenocarcinoma e CCE do Instituto Nacional de Câncer.
Resultados: O sistema fornece detecção da lesão com precisão de 84,5% para adenocarcinoma e 89,6 para CCE, com sensibili-
dade de 91,7% e 90,4%, respectivamente, considerada adequada quando comparada com estudos semelhantes.
Conclusão: Este sistema oferece um método preciso de detecção, segmentação e classificação para um conjunto reduzido de 
pacientes, que pode ajudar radiologistas na análise de imagens e acelerar o diagnóstico preliminar.
Unitermos: Carcinoma pulmonar de células não pequenas; Processamento de imagem assistida por computador; Segmentação; 
Semântica; Carcinoma/classificação; Aprendizagem profunda.
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INTRODUCTION

Early cancer detection influences the disease out-
come(1). That motivated the present study, which aims 
to aid in the classification of the predominant histologic 

subtypes of lung cancer. Lung cancer is a major public 
health issue in Brazil. According to the Brazilian Instituto 
Nacional de Câncer (INCA, National Cancer Institute), 
a combined 32,560 cases of lung, trachea, and bronchial 
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cancer were expected in 2024(2). Non-small cell lung can-
cer (NSCLC) is the most common type, accounting for 
85% of all lung cancer cases. There are two main sub-
types of NSCLC: adenocarcinoma and squamous cell car-
cinoma (SCC). In 60% of cases, NSCLC is detected at an 
advanced stage, resulting in a global 5-year survival rate 
of only 10–15%(3,4). Biopsy, albeit essential for confirm-
ing malignancy, has limitations due to the small size of 
the specimens and therefore might may not fully capture 
the heterogeneity of a given tumor. Accurate delineation 
of the tumor is a crucial first step in its classification(5). 
Because stable, accurate segmentation is critical, an au-
tomated, reproducible lung tumor delineation algorithm 
would facilitate that classification. In addition, some im-
ages cannot be segmented in only one step, and additional 
steps are therefore required; in many cases, the radiolo-
gist must scroll through many computed tomography (CT) 
slices to determine what part of the segmentation is miss-
ing(6). Medical image segmentation generally consists of 
two related tasks: object recognition and object delinea-
tion. Accurate image segmentation methods are vital for 
proper disease detection, histologic classification of tu-
mors, diagnosis, treatment planning, and follow-up. In ad-
dition to the conventional region-of-interest analysis, an 
accurate image segmentation method is often needed for 
diagnostic or prognostic assessment(7–10).

Deep learning applications

Deep learning (DL) techniques have been increasingly 
used in order to address challenges in the detection and 
classification of tumors, requiring large annotated data sets 
for effective learning(11). Recent advancements include hy-
brid regional networks for automated tumor segmentation 
from positron-emission tomography (PET)/CT images(12), 
fully automated pipelines for volumetric segmentation of 
NSCLC(13), and computer-aided diagnostic methods for 
CT images(14). The World Health Organization emphasizes 
the importance of staging and histologic classification for 
treatment and prognosis(15). Networks employing DL could 
enhance the classification of NSCLC subtypes by leverag-
ing various image data sets, tailored for both public and 
local populations.

MATERIALS AND METHODS

This work was approved by the INCA Board of Eth-
ics (Reference no. 6.331.223; 14/09/2022). We analyzed 
2,005 examinations in the INCA database with the pre-
dominant histologic subtypes, of which 1,172 (58.5%) 
were adenocarcinoma and 833 (41.5%) were SCC. The 
criteria for patient selection were as follows: having a tu-
mor classified as stage I, II or III; with having a tumor for 
which the largest diameter was ≤ 7 cm; having no metasta-
ses; and CT image acquisition and classification of the his-
tologic subtype having occurred within two weeks of each 
other. From the INCA database, we selected 104 patients 

to use for the validation—62 with adenocarcinomas and 
42 with SCCs—which reflects a ratio between the sub-
types similar to that of the sample as a whole. For the clas-
sification, we selected 62 INCA patients: 30 with adeno-
carcinomas and 32 with SCCs. For validation, we used 81 
patients registered in The Cancer Image Archive (TCIA): 
41 with adenocarcinomas and 40 with SCCs. Thus, we 
maintained the balance of the data sets for each subtype.

The pipeline developed for this research uses two 
convolutional neural networks (CNNs) written in Python, 
version 3.9, using the Tensor Flow and Keras frameworks 
for model implementation and the scikit-learn library for 
the evaluation model. The first CNN employs a 2D U-Net 
architecture(16) that uses convolutional layers to detect lo-
cal features in input images. Each convolutional layer con-
nects to a small subset of spatially connected neurons, with 
shared connection weights enhancing the detection of lo-
cal structures. This architecture includes pooling layers to 
reduce computational complexity and extract hierarchical 
image features. The second CNN is based on the VGG16 
model proposed by Simonyan & Zisserman(17). This model, 
noted for its high performance on ImageNet(18,19), features 
a deep network with 13 convolutional layers, five max-pool-
ing layers, and three dense layers. The VGG16 design in-
cludes smaller filters and increased depth and filter count 
after each max-pooling layer. Transfer learning is used to 
adjust the final layers for improved classification of adeno-
carcinoma and SCC. The DL algorithm was developed in 
Python using the Keras API and TensorFlow framework; all 
tasks were performed on a system with an 8th generation 
Intel i7 processor, 16 GB RAM, and a NVIDIA GeForce 
GTX 1060 graphics processing unit (GPU).

Data set

For the purposes of this study, we employed TCIA(20), 
a public database which, at our access, contained 442 
scans of patients with NSCLC, including clinical an-
notations for radiomics. This database also provides the 
ground truth segmentation images of the NSCLC tumors, 
defined by a specialist board, representing the tumor label 
with the same shape as the corresponding CT image. For 
training, 122 scans were selected from the TCIA data set 
and categorized as adenocarcinoma, SCC, or “not other-
wise specified”. For external validation, we used 104 PET/
CT scans from INCA patients diagnosed with NSCLC be-
tween 2016 and 2020. These scans averaged 600 slices 
each, from a Philips Gemini TF PET/CT scanner with 
standardized scanning protocols, with a tube voltage of 
120 kVp, a tube current of 213 mAs, mediastinal window 
settings, and a slice thickness of 1 mm, without contrast.

Preprocessing

The preprocessing steps aimed to optimize data for 
training(21) and conform to GPU memory limitations. 
Original images (512 × 512 pixels) were resized (to 256 
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detected and classified as noncancerous, subsequently 
being classified as noncancerous on histology) and FP is 
the number of false-positive results (i.e., segmented slices 
in which a nodule was detected and classified as cancer-
ous, subsequently being classified as noncancerous on 
histology).

Eq. 4

where Acc is the accuracy, TP + TN is the total number 
of slices that were classified correctly, and TP +TN + FP + 
FN is the overall total number of slices evaluated.

Training

The use of a GTX 1060 GPU accelerated the training 
process approximately 16-fold in comparison with train-
ing without a GPU. Two learning rates (10−3 and 10−6) 
were tested, and the best efficiency was achieved at the 
10−3 rate. In this work, the adaptive moment estimation 
algorithm optimizer was also used, in order to minimize 
the cost function (cross-entropy) and maximize the DSC, 
being considered the optimizer that has been shown to 
converge faster. Adaptive moment estimation optimizer is 
an adaptive learning rate optimization algorithm specifi-
cally designed to train deep neural networks(23). The learn-
ing runtime was about 12 h for batches of 8 or 18 images.

Initially, the 2D U-Net was pretrained from scratch 
by using 28,506 images from the TCIA NSCLC database 
with 40 epochs. After this initial learning step, a fine-
tuning transfer learning process was applied to the 2D U-
Net to improve the DSC performance. This fine-tuning 
learning step used an additional data set of 497 tumor-
only images of 22 other patients from the TCIA NSCLC 
database. This extra learning step used an additional 20 
epochs to improve the DSC performance of the 2D U-
Net. We consider this adequate for detecting images with 
tumors without impairing the detection of true negatives, 
which account for the majority (77%) of the images.

Segmentation

Semantic segmentation consists of separating an im-
age into different regions and allocating each pixel to the 
part of the image to which it belongs. The NSCLC cases 
were detected by using the U-Net architecture. An ad-
ditional 2,015 images containing NSCLC ground truth 
segmentation (17 different patient cases with NSCLC ad-
enocarcinoma and SCC subtypes) were selected from the 
TCIA data set to validate the segmentation results.

Figure 1 shows the steps in the semantic segmenta-
tion process, from the initial learning to the validation 
test: the 2D U-Net pretraining on the 28,506 images from 
the TCIA database; the initial validation test with segmen-
tation metrics (DSC) related to the 2,015 images from the 
TCIA database; the fine-tuning step with 497 tumor-only 
images from the TCIA database to improve the segmenta-
tion performance of the 2D U-Net; and the final NSCLC 

× 256 pixels) to retain quality while ensuring sufficient 
spatial resolution. The preprocessing consisted of isolat-
ing the lung regions by morphological effects (erosion and 
dilation) after applying a threshold. A mask for the lung 
region only was then applied to the original image, and a 
masked image was applied to the input network. This pro-
cedure was also used on the INCA image data set during 
the validation.

Data augmentation

The TCIA data set initially contained 10,025 imag-
es, of which only 1,057 contained NSCLC information. 
Geometric transformations were applied to address this 
imbalance and enhance training. Horizontal mirroring 
increased the data set to 20,050 samples. Additional aug-
mentations(22), including rotations (10° and −10°) and 
elastic deformations (random displacement fields), fur-
ther expanded the data set to 28,506 images. This same 
data augmentation sequence was used on the INCA data-
base images only in the training stage of the classification 
network.

Metrics

To evaluate the results from the DL algorithm, some 
metrics were calculated. For the validation testing of the 
segmentation results using the TCIA database, we calcu-
lated the Dice similarity coefficient (DSC), a statistical in-
dex that evaluates the similarity between two sets of data 
and has become one of the most widely used tools in the 
validation of image segmentation algorithms(20), as follows:

Eq. 1

where |X| is the area of the ground truth segmentation, 
|Y| is the area of the semantic segmentation result, and 
2|X ∩ Y| is the area of overlap (intersection) between |X| 
and |Y|.

To evaluate the performance of the algorithm in the 
detection and classification of NSCLC tumors, we calcu-
lated the sensitivity, specificity, and accuracy as shown in 
Eqs. 2, 3, and 4, respectively:

					     Eq. 2

where Sen is the sensitivity, TP is the number of true-pos-
itive results (i.e., segmented slices in which a nodule was 
detected and classified as adenocarcinoma or SCC, sub-
sequently being classified as adenocarcinoma or SCC on 
histology), and FN is the number of false-negative results 
(i.e., segmented slices in which a nodule was detected and 
classified as noncancerous, subsequently being classified 
as adenocarcinoma or SCC on histology).

					     Eq. 3

where Spe is the specificity, TN is the number of true-neg-
ative results (i.e., segmented slices in which a nodule was 

2|X ∩ Y|
|X| + |Y|

DSC = 

TP + TN
TP + TN + FP + FN

Acc =                            × 100

TP
TP + FN

Sen =                   × 100

TN
TN + FP

Spe =                   × 100
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validation test with 85,678 images from 104 INCA pa-
tients. The results were compared with the annotations 
available on patient electronic medical records to evaluate 
sensitivity.

Detection

The NSCLC cases were detected by comparing the 
binary image outputs with the annotations available on 
patient electronic medical records to evaluate sensitivity.

Classification

To classify the NSCLC histologic subtype, we used the 
VGG16 architecture, with performance metrics including 
accuracy and the area under a receiver operating charac-
teristic curve. Three learning rates (10−7, 10−8, and 10−9) 
were tested, and the best accuracy was achieved with the 
10−8 rate. The process involved the following: fine-tuning 
training with 3,080 images from the INCA database and 
testing with 299 images from the TCIA database; valida-
tion using 2,981 images from the TCIA database; image 
preprocessing including centering, resizing to 112 × 112 
pixels, and conversion to the red-green-blue color space; 
and data augmentation similar to what was used in the 
previous steps. Figure 2 illustrates the fine-tuning training 
with 3,080 images from the INCA database and the final 
validation with 2,891 images from the TCIA database.

RESULTS

Table 1 shows TCIA and INCA epidemiological infor-
mation from patients with each of the predominant his-
tologic subtypes used in order to train the segmentation 
and detection DL algorithms. The pretraining step used 
40 epochs, and the training process as a whole used 60 
accumulated epochs.

Figure 3 shows relevant clinical factors: the NSCLC 
patient staging for the early stage (stage I and stage II) and 
advanced stage (stage III) data sets. Comparing the INCA 
and TCIA data sets, we found that number of patients was 

similar for stage I but there were more INCA patients in 
stage II and more TCIA patients in stage III. The INCA 
data set had more patients in the early stages, whereas the 
distribution of patients was more homogeneous across the 
three stages in the TCIA data set. Figure 4 shows the DL 
model performance (loss function and DSC segmentation 

Figure 1. Flow chart of the script, from initial learning to the external validation test.

Figure 2. The training step (i) used 3,080 images from the INCA database, the 
testing step used 299 images from the TCIA database, and the validation step 
(ii) used 2,981 images from the TCIA database .
ADC, adenocarcinoma.

Table 1—Histologic subtypes and ages of the patients used in training the DL 
model, by data set and gender.

Histologic subtype

Data set

TCIA
Gender

Male
Female

INCA
Gender

Male
Female

Adenocarcinoma
(n = 62)

n (%)

13 (61.9)
8 (38.1)

30 (48.4)
32 (51.6)

SCC
(n = 42)

n (%)

16 (43.2)
21 (56.8)

34 (81.0)
8 (19.0)

Age
(years)

Mean ± SD

70.6 ± 9.4
63.1 ± 9.1

70.4 ± 7.9
65.7 ± 8.7

SD, standard deviation.
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accuracy of 0.68) using the TCIA data set during the fine-
tuning step to learn and test scripts of the first detection 
and segmentation process.

Figure 5 shows the semantic segmentation result 
obtained and applied as input to the preprocessed image 
of the DL classification histological subtype step to four 
tumors, two classified as adenocarcinoma and two clas-
sified as SCC, located on both lungs. Each CT scan had 
an execution time of approximately 6 s to predict all 600 
slices/patient.

For the test/validation image data set, the proposed DL 
model showed greater than 90% sensitivity and specificity 
for detecting both main histologic subtypes of NSCLC. Af-
ter the fine-tuning step, the model was found to have a sen-
sitivity of 91.7% and 90.4% for adenocarcinoma and SCC, 
respectively, with a specificity of 99.3% and 99.5%, respec-
tively, and an accuracy of 84.5% and 89.6%, respectively, in 
INCA patients. The number of patients whose data were 
used in order to train the proposed DL model was balanced 
with the incidence rate by histological subtype (adenocar-
cinoma and SCC) and, as indicated above, the accuracy 
was 5% better for classifying SCC.

DISCUSSION

During the training of the DL model proposed in our 
study, a DSC of 0.68 was achieved, compared with the 
0.84 reported by Primakov et al.(13), who did not differenti-
ate among NSCLC subtypes. After fine-tuning, our model 

Figure 3. Staging of NSCLC in the TCIA and INCA data sets.

Stage

N
um

be
r o

f p
at

ie
nt

s

Figure 5. Examples of images of both lungs from four patients in the INCA data set, some with adenocarcinoma (a,d) and some with SCC (b,c). The lung-masked 
CT slices are shown in a1, b1, c1, and d1. The segmentation results are shown in a2, b2, c2, and d2.

Figure 4. Performance of the proposed DL model (loss function and DSC seg-
mentation accuracy of 0.68) during the 20-epoch fine-tuning step.
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achieved a 99% specificity in tumor detection, which aligns 
with the results obtained by Lei et al.(12) and indicates ef-
fective differentiation between images of tumors and non-
tumors, with minimal false-positive results.

The TCIA data set used for training our model in-
cluded 21 cases of adenocarcinoma, 37 cases of SCC, and 
58 cases of other NSCLC subtypes, whereas the INCA 
data set use for external validation included 62 cases of 
adenocarcinoma and 42 cases of SCC. The predominance 
of SCC over adenocarcinoma in the TCIA data set consti-
tutes a significant mismatch, given that adenocarcinoma 
is more prevalent in the population of Brazil(2,30). To ad-
dress this imbalance, the model should be fine-tuned with 
a more balanced data set, ideally with twice as many cases 
of adenocarcinoma as cases of SCC. Such adjustments are 
crucial for increasing accuracy and addressing population-
specific biases(25,26).

The present study utilized adequate preprocessing 
with a lung mask, allowing satisfactory results to be ob-
tained within 60 epochs, much fewer than the 100–500 
epochs required in similar studies(24). That level of effi-
ciency was due to improved preprocessing and training 
techniques. The proposed method also demonstrated good 
agreement with physician reports on electronic medical 
records for INCA patients, in keeping with the results ob-
tained by Lei et al.(12) and Paing et al.(14).

For identifying adenocarcinoma and SCC, our de-
tection algorithm achieved an accuracy comparable to 
that reported by Aydın et al.(27), with a sensitivity similar 
to that reported by Primakov et al.(13). The results of the 
present study, distinguishing between the main histologic 
subtypes, aligns well with the findings of nondichotomous 
classification studies such as those conducted by Chaunzwa 
et al.(28) and Pang et al.(29). After testing various image 
sizes, we chose 224 × 224 pixels, which is suitable for the 
VGG16 network input, the same input as the original net-
work architecture.

Overall, increasing accuracy in classifying NSCLC his-
tology subtypes remains challenging, particularly for mul-
tiple subtypes, due to the need for larger and more diverse 
data sets. Classification accuracy tends to improve with a 
larger number of cases for each subtype in the data set.

Our study has some limitations. First, the proposed 
DL model was not trained to make an initial diagnosis of 
cancer, instead being trained and tested on patients al-
ready diagnosed with neoplasia, with the aim of differenti-
ating between histologic subtypes. In addition, the model 
was tested on data from a single scanner. Although that 
might be considered a limitation, it highlights the feasi-
bility of applying DL for histologic differentiation in this 
controlled setting.

Upregulated expression of programmed death-ligand 
1 protein is important for some immunotherapies. There-
fore, future studies could improve upon our research con-
siderably by incorporating genomics.

We believe that our findings could facilitate the de-
velopment of advanced diagnostic tools to improve health 
care, mainly in regions with limited access to medical spe-
cialists. Another area in which our model could be useful 
is in the diagnosis of lung cancer due to electronic ciga-
rette use, the incidence of which has been increasing, par-
ticularly among young people.

CONCLUSION

This work offers a way to classify the main histologic 
subtypes of NSCLC in a specific population, with a DSC 
similar to or better than that obtained in previous stud-
ies of this topic. This approach could be useful in the 
automated classification of lung cancer subtypes in local 
populations, using DL networks trained on public image 
data sets. The use of the DL model proposed here could 
also help oncological radiologists in image analysis and 
processing.
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